

51st International Conference on Parallel Processing

August 29th to Sept 1st, 2022.

Eco-FL: Adaptive Federated Learning with Efficient Edge Collaborative Pipeline Training

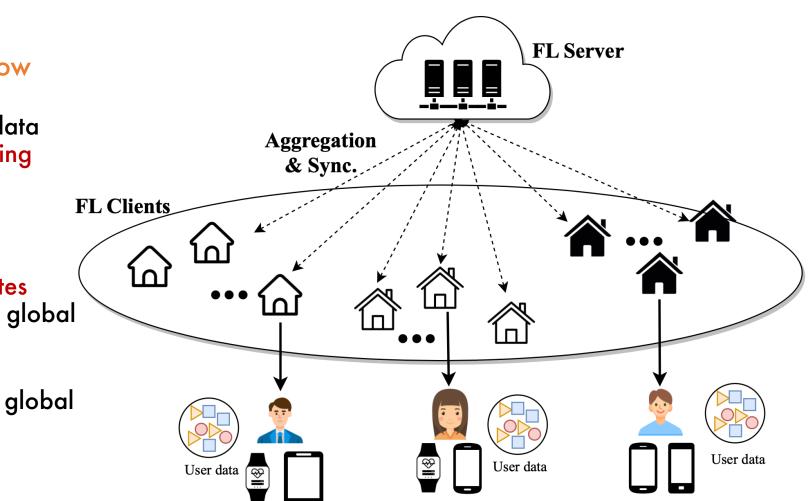
<u>Shengyuan Ye</u>, Liekang Zeng, Qiong Wu, Ke Luo, Qingze Fang, Xu Chen

School of Computer Science and Engineering

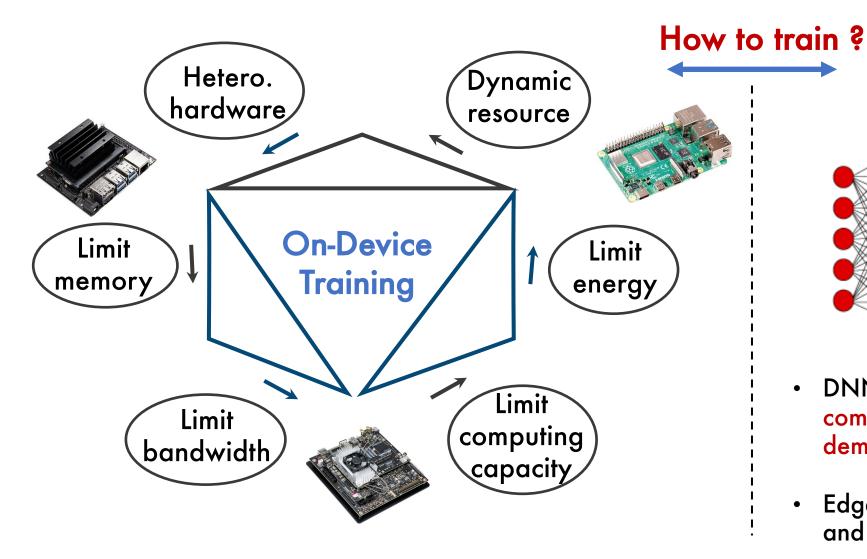
Sun Yat-sen University

Federated Learning

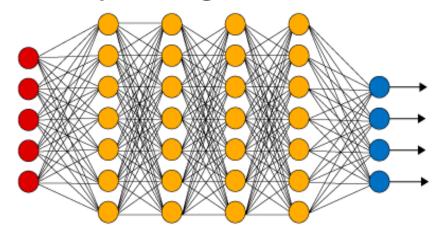
- Federated Learning workflow
 - Each client uses its local data and available IoT computing resource to learn model parameters
 - A central server aggregates parameters to update the global model
 - Periodically synchronizes global model with each client



Challenges of Training on Devices



Deep Learning Neural Network



- DNN Training is extremely computation-intensive and resourcedemanding
- Edge devices are resource-constrained and heterogeneous

Challenges of Training on Devices

- Existing Literature:
 - Model Compression and Pruning
 - Model Quantization
 - Applying light-weight model on edge

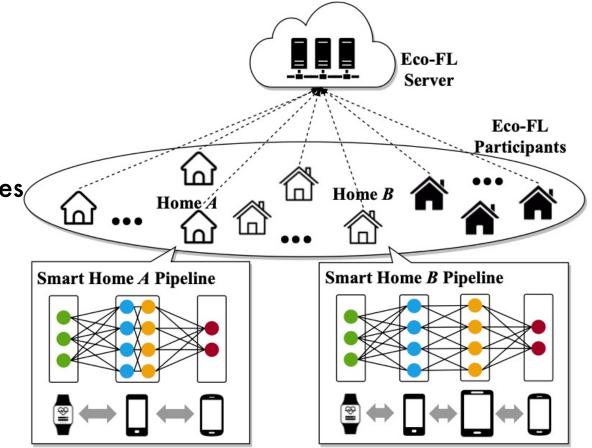
• Drawback:

- Defect the model test accuracy as well as FL's training convergence
- Need to optimize specially for a particular model and is not easily expandable

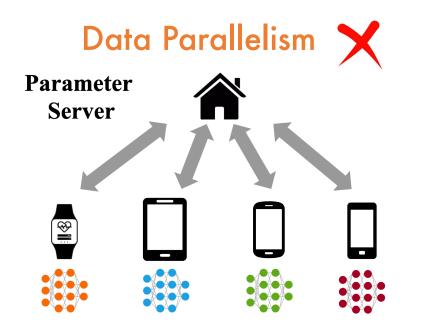
Edge Collaboration DNN Training for FL

• Issues:

- Collaboration mechanism to orchestrate distributed edge devices
- Dynamics computing resource of IoT devices
- Heterogeneous computing capability of collaborated devices

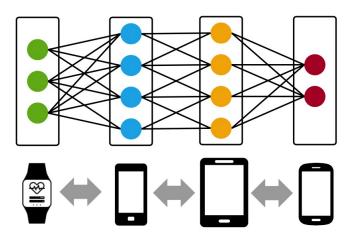


Edge Collaboration DNN Training for FL



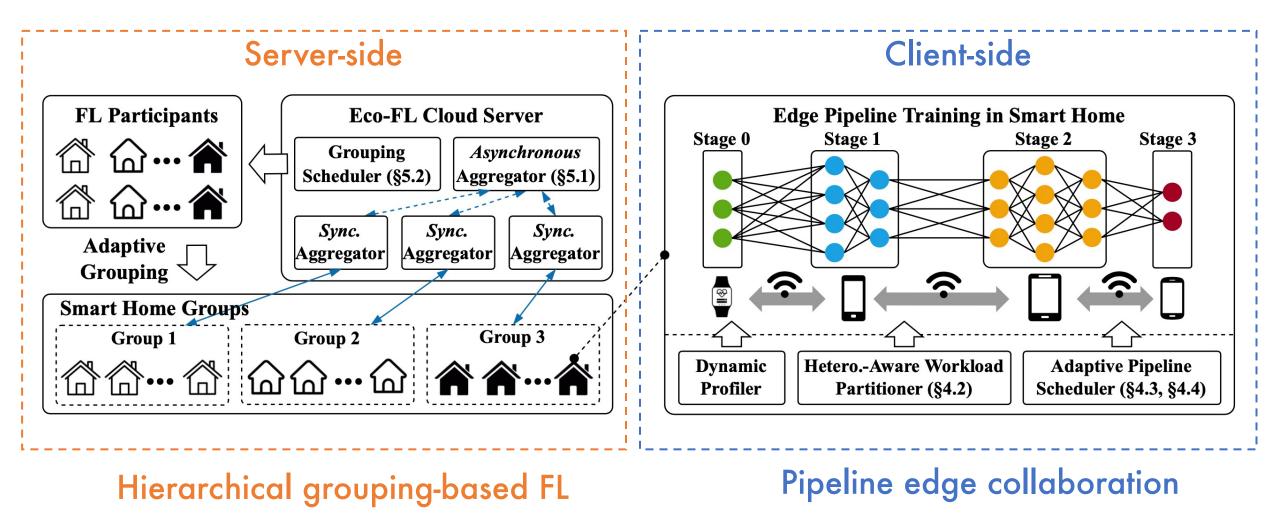
- Each device hold a complete model, which is expensive for memory-constrained IoT devices
- Parameters transmission overhead can occupy nearly 66.3% in data parallelism training

Pipeline Parallelism V

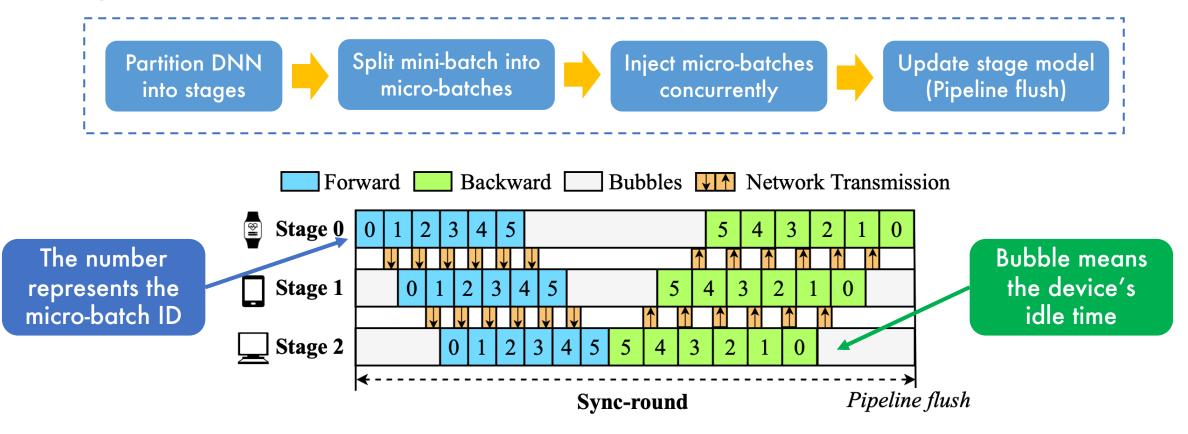


- Each device is responsible for a subset of model layers caching and computing
- Transmission overhead can be efficiently overlap by forward and backward computation

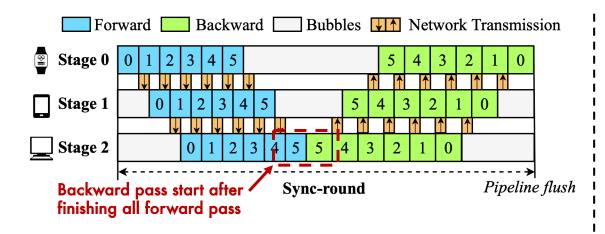
Eco-FL Framework Overview



• Pipeline Parallelism Workflow

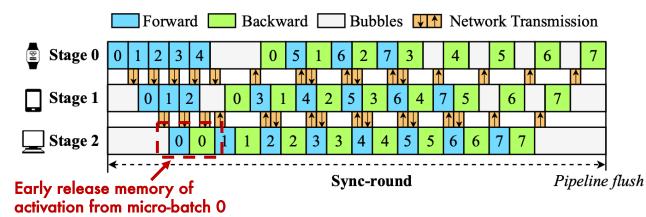


Traditional Pipeline Strategy



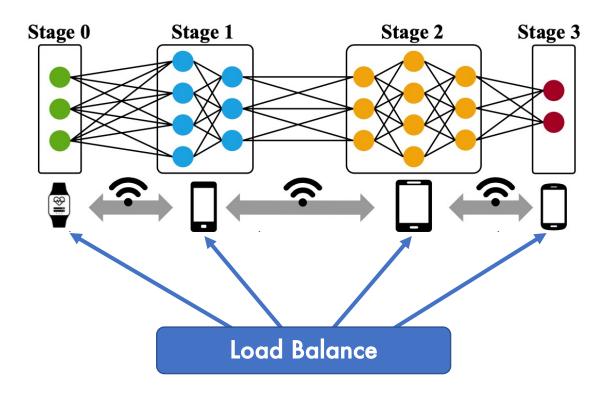
- <u>Backward pass only start After finishing</u> all <u>Forward pass (BAF Strategy)</u>
- Activations produced by forward tasks have to be kept for all micro-batches until backward pass begin, which is memory-unfriendly for IoT devices

Eco-FL Resource-Efficient Pipeline Strategy



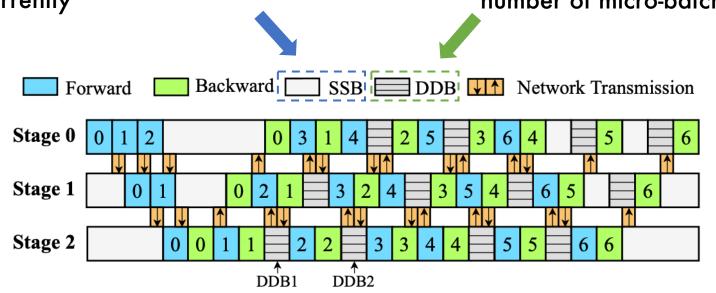
- Schedule <u>one</u> Forward pass followed by <u>one</u> <u>B</u>ackward pass (<u>1F1B</u> Strategy)
- Employ an early backward scheduling to release memory produced by forward pass for reuse
- Maintain the same throughput as BAF strategy

- Heterogeneity-Aware Workload Partitioning
 - Step 1: Profiling
 - Monitor the computation time across forward pass and backward pass on heterogeneous IoT devices
 - Collect layer message of DNN model
 - Step 2: Workload Partitioning:
 - Global throughput of the pipeline is determined by the execution time of slowest stage (lagger)
 - Partition the model into balanced stages with dynamic programming algorithm

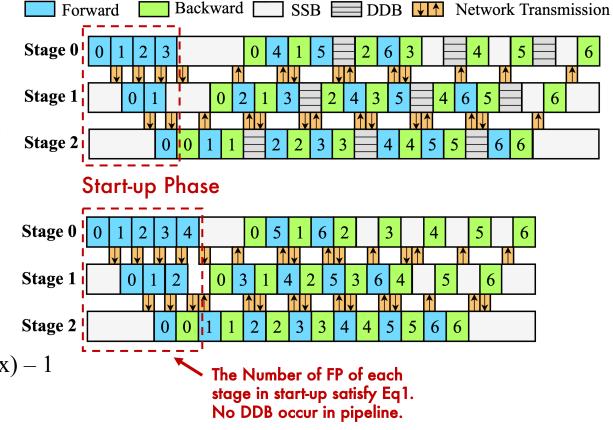


- Pipeline bubbles analysis
 - Synchronous Static Bubble (SSB)
 - Caused by the periodic pipeline flush, inevitable in synchronous strategy
 - Can be minimized by increasing the number of micro-batches injected concurrently

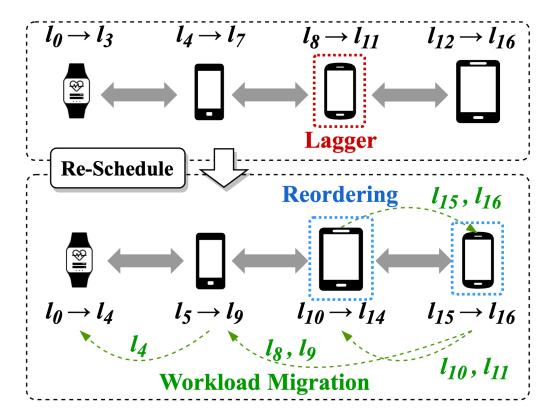
- Data Dependency Bubble (DDB)
 - Caused by the data dependency of microbatches in pipeline training.
 - The occurrence of DDB is periodic and can not be eliminated by increasing the number of micro-batches



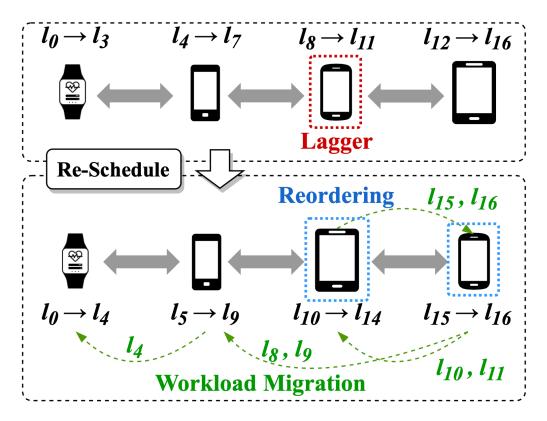
- Trade off between training throughput and peak memory usage
 - DDB is determined by the the number of forward pass (FP) in start-up phase
 - If the number of FP in start-up phase too small, DDB will occur. But if too many FP reside concurrently in stages, it will cause memory pressure to IoT devices.
- Best micro-batch scheduling strategy
 - **Eq1:** # of FP in start-up = 2(# of stages stage index) 1
 - Avoid the occurrence of DDB while minimizing memory pressure of each stage



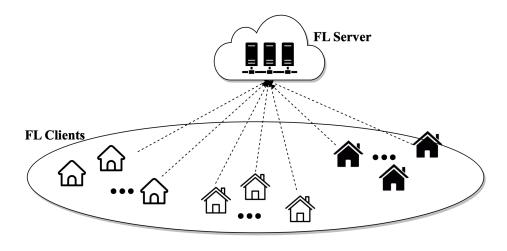
- Issue: Dynamic edge resources
 - IoT devices usually have high variation in available computing capability and memory resources
 - The maximum throughput of the pipeline is greatly determined by the lagger



- Issue: Dynamic edge resources
 - IoT devices usually have high variation in available computing capability and memory resources
 - The maximum throughput of the pipeline is greatly determined by the lagger
- Solution: Adaptive workload migration
 - Training worker will periodically report the execution time of FP and BP
 - If there is a large deviation between the current and historical execution time of any device, pipeline will adaptively self-rebalance and migrate workload according to new scheduling.



Traditional Sync. & Async. FL Architecture

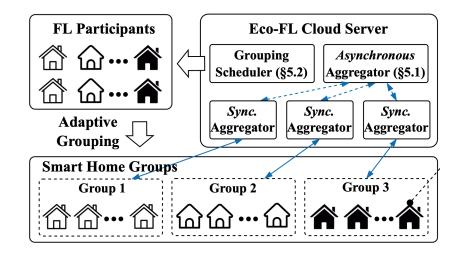


- Sync. FL:
- Achieve high training performance
- The slowest client (straggler) can significantly prolong the training time

• Async. FL:

- Alleviate the straggler issue
- Sacrifice accuracy and convergence speed

Eco-FL Hierarchical Architecture



- The available trusted devices that each smart home can collaborate with usually vary, which causes severe straggler issue
- Hybrid Hierarchical FL combine the best of both Sync. and Async. mechanisms, while efficiently alleviate straggler issue.

Adaptive Client Grouping

Intra-group Sync. Aggregation Inter-group Async. Aggregation

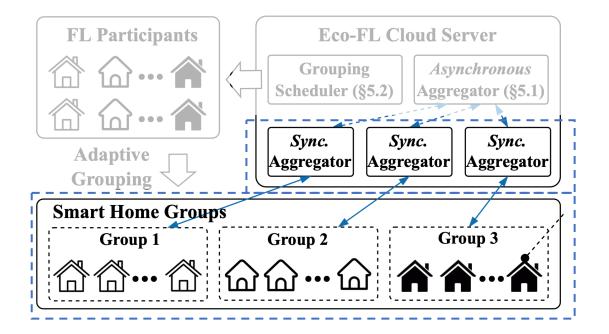
- Adaptive Client Grouping:
 - Group smart homes according to their training performance and data distribution

FL Participants	Eco-FL Cloud Server			
☎ ጬ… 🤇	Grouping Scheduler (§5.2)	Asynchronous Aggregator (§5.1)		
Adaptive	Sync. Aggregator Aggregator Aggregator			
Grouping	Aggregator Aggr	egator Aggregator		
Smart Home Groups				
Group 1	Group 2	Group 3		
	公 … 俞 1	****		

Adaptive Client Grouping

Intra-group Sync. Aggregation

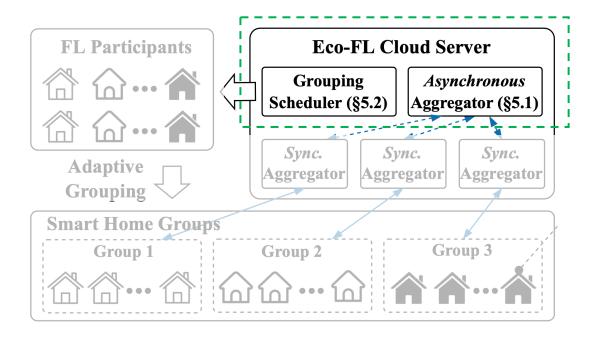
- Adaptive Client Grouping:
 - Group smart homes according to their training performance and data distribution
- Intra-group Synchronous Aggregation:
 - Synchronous aggregation is applied to aggregate model updates from the clients with similar response latency within a same group



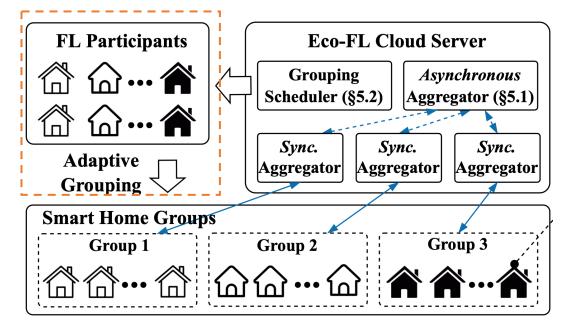
Adaptive Client Grouping

Intra-group Sync. Aggregation

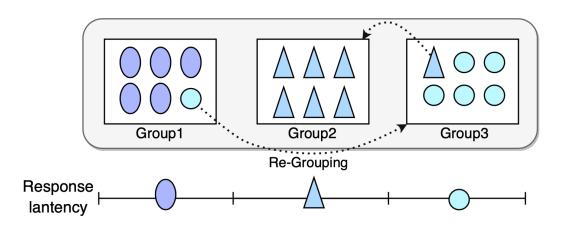
- Adaptive Client Grouping:
 - Group smart homes according to their training performance and data distribution
- Intra-group Synchronous Aggregation:
 - Synchronous aggregation is applied to aggregate model updates from the clients with similar response latency within a same group
- Inter-group Asynchronous Aggregation:
 - Asynchronous aggregation is made for global model aggregation among different groups



- Heterogeneity-aware Client Grouping
 - System heterogeneity: Stragglers will prolong the synchronous training time intra-group
 - Data heterogeneity: Non-IID characteristics can harm the convergence of model training during synchronous process intra-group
- Grouping Target:
 - Let the response latency of the members in the group be as close as possible while having an associated data distribution as close as possible to the I.I.D. distribution



- Dynamic Client Re-grouping
 - The response latency of each client can be varying occasionally due to the changes in its collaborative device resources, which can disable the static grouping method
 - Eco-FL server will monitor each client in runtime and dynamically re-group client according to their real-time response latency



Al	gorithm 1: Adaptive Grouping Process
1 P	rocess Eco-FLServer():
2	Collect and monitor response latency of each client;
3	if Client <i>n</i> in group <i>g</i> satisfy $ L^g - L_n > RT^g$ then
4	Regroup(n);
5	end
6 F	unction Regroup(n):
7	$MinCost \leftarrow +\infty, t \leftarrow -1;$
8	for $g \in \{0, 1,, \mathcal{G} - 1\}$ do
9	if $COST_n^g < MinCost and L^g - L_n \le RT^g$ then
10	$t \leftarrow g;$
11	$\begin{array}{c c} t \leftarrow g; \\ \text{MinCost} \leftarrow \text{COST}_n^g; \end{array}$
12	end
13	end
14	if $t \neq -1$ then
15	Move client <i>n</i> to group <i>t</i> ;
16	else
17	Drop out client n until its response latency L_n meets
	the threshold range of any group;
18	end

Experimental Setting

Federated Learning

- Models:
 - CNN with two 5x5 convolution layers
- Baselines:
 - FedAvg, FedAsync, FedAT, Astraea
- Datasets:
 - Cifar10, MNIST, Fashion-MNIST
- Testbed:
 - Virtual machine instance (48 vCPUs and 64GB memory)
 - Use Docker to deploy FL server and clients. Each client gets assigned 2 vCPU cores

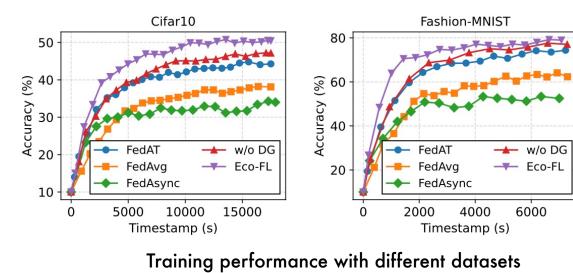
Pipeline Training

- Models:
 - EfficientNet, MobileNetv2
- Baselines:
 - PipeDream, Gpipe, Single device

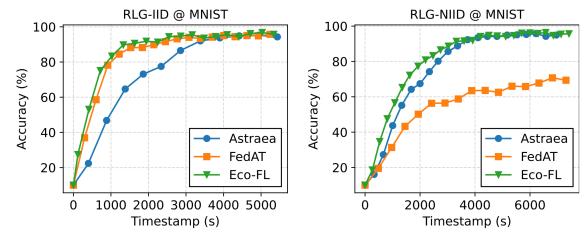
• Testbed:

Hardware	Power Mode	GPU Max	Memory	Network
naiuwaie		Frequency		Bandwidth
Jetson Nano	5W (L)	640MHz	4GB	100Mbps
	10W (H)	921.6MHz	4GD	Toombps
Jetson TX2	Max-Q	850MHz	8GB	100Mbma
	Max-N	1.3GHz	oGD	100Mbps

- Federated Learning Performance
- Training performance
 - Eco-FL hierarchical architecture outperforms the baselines with faster convergence and higher achieved accuracy
 - Eco-FL with the adaptive scheduler can still maintain a high performance under the IoT environment with dynamic nature

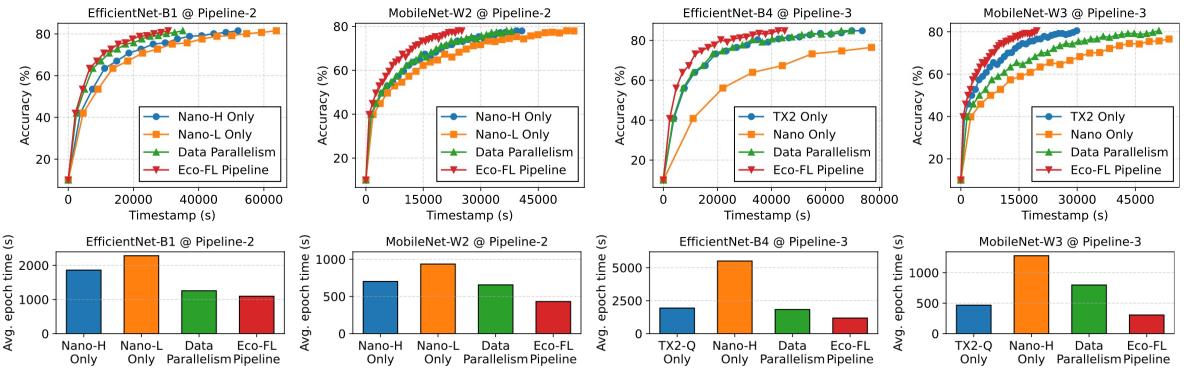


- Heterogeneity-aware client grouping
 - FedAT: Group clients only based on response latency
 - Astraea: Grouping clients only based on data distribution
 - Eco-FL heterogeneity-aware grouping method outperform both FedAT and Astraea up to 26.3% on testing accuracy

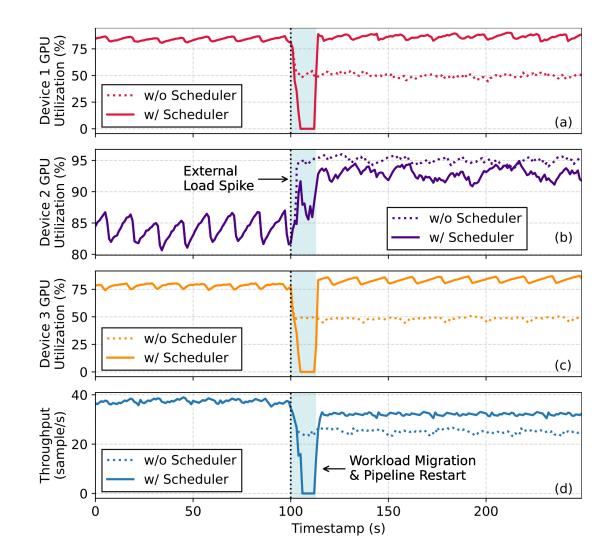


Effectiveness of heterogeneity-aware client grouping

- Pipeline Training Performance
 - Training Results
 - Evaluation on a 2-stage pipeline and a 3-stage pipeline
 - Eco-FL pipeline efficiently collaborates the computation power of all IoT devices and reaches the target accuracy 2.6× faster than data parallelism.



- Pipeline Training Performance
 - Dynamic pipeline re-scheduling and workload migration
 - An external GPU workload to device 2 at the 100-th timestamp.
 - Without pipeline re-scheduling, the training speed of device 2 will significantly slow down and become lagger in the pipeline
 - With our adaptive pipeline scheduler, device 2 will migrate part of model layers to device 1 and 3 to rebalance the workload across each stage.



Conclusion

- We devise a novel edge collaborative pipeline parallelism to achieve edge resource pooling over trusted devices in proximity for local FL model training acceleration.
- We propose Eco-FL, a hierarchical FL framework upon the edge collaborative pipeline training, which jointly considers both the response latency and data distribution divergence.
- We feature adaptive scheduling in both FL server and client sides to tackle system dynamics inherent in edge scenarios.
- Experimental results show that Eco-FL can upgrade the training accuracy by up to 26.3%, reduce the local training time by up to 61.5%, and improve the local training throughput by up to 2.6× against state-of-the-art baselines.

Thanks!

<u>Shengyuan Ye</u>, Liekang Zeng, Qiong Wu, Ke Luo, Qingze Fang, Xu Chen <u>yeshy8@mail2.sysu.edu.cn</u>, Sun Yat-sen University

