
Eco-FL: Adaptive Federated Learning with
Efficient Edge Collaborative Pipeline Training
Shengyuan Ye, Liekang Zeng, Qiong Wu, Ke Luo, Qingze Fang, Xu Chen

School of Computer Science and Engineering

Sun Yat-sen University

1

Federated Learning

2

• Federated Learning workflow

• Each client uses its local data
and available IoT computing
resource to learn model
parameters

• A central server aggregates
parameters to update the global
model

• Periodically synchronizes global
model with each client

Challenges of Training on Devices

On-Device
Training

Hetero.
hardware

Limit
memory

Limit
bandwidth

Limit
computing
capacity

Limit
energy

Dynamic
resource

• DNN Training is extremely
computation-intensive and resource-
demanding

• Edge devices are resource-constrained
and heterogeneous

How to train ?

Credit: Google Image
3

• Existing Literature:

• Model Compression and Pruning

• Model Quantization

• Applying light-weight model on edge

• Drawback:

• Defect the model test accuracy as
well as FL’s training convergence

• Need to optimize specially for a
particular model and is not easily
expandable

4

Challenges of Training on Devices

Edge Collaboration DNN Training for FL

• Issues:

• Collaboration mechanism to orchestrate
distributed edge devices

• Dynamics computing resource of IoT devices

• Heterogeneous computing capability of
collaborated devices

5

Data Parallelism Pipeline Parallelism

• Each device hold a complete model, which is
expensive for memory-constrained IoT devices

• Parameters transmission overhead can occupy
nearly 66.3% in data parallelism training

• Each device is responsible for a subset
of model layers caching and computing

• Transmission overhead can be efficiently
overlap by forward and backward
computation

6

Edge Collaboration DNN Training for FL

Eco-FL Framework Overview

Server-side Client-side

7

Hierarchical grouping-based FL Pipeline edge collaboration

Collaborative Edge Training Via Pipeline
Parallelism

Partition DNN
into stages

Split mini-batch into
micro-batches

Inject micro-batches
concurrently

Update stage model
(Pipeline flush)

• Pipeline Parallelism Workflow

8

The number
represents the
micro-batch ID

Bubble means
the device’s

idle time

Collaborative Edge Training Via Pipeline
Parallelism

Traditional Pipeline Strategy Eco-FL Resource-Efficient Pipeline Strategy

• Backward pass only start After finishing
all Forward pass (BAF Strategy)

• Activations produced by forward tasks
have to be kept for all micro-batches
until backward pass begin, which is
memory-unfriendly for IoT devices

• Schedule one Forward pass followed by one
Backward pass (1F1B Strategy)

• Employ an early backward scheduling to
release memory produced by forward pass
for reuse

• Maintain the same throughput as BAF strategy

Early release memory of
activation from micro-batch 0

Backward pass start after
finishing all forward pass

9

Collaborative Edge Training Via Pipeline
Parallelism
• Heterogeneity-Aware Workload Partitioning

Load Balance

• Step 1: Profiling
• Monitor the computation time across

forward pass and backward pass on
heterogeneous IoT devices

• Collect layer message of DNN model

• Step 2: Workload Partitioning:
• Global throughput of the pipeline is

determined by the execution time of
slowest stage (lagger)

• Partition the model into balanced stages
with dynamic programming algorithm

10

Collaborative Edge Training Via Pipeline
Parallelism
• Pipeline bubbles analysis

• Synchronous Static Bubble (SSB)
• Caused by the periodic pipeline flush,

inevitable in synchronous strategy

• Can be minimized by increasing the
number of micro-batches injected
concurrently

• Data Dependency Bubble (DDB)
• Caused by the data dependency of micro-

batches in pipeline training.

• The occurrence of DDB is periodic and
can not be eliminated by increasing the
number of micro-batches

11

Collaborative Edge Training Via Pipeline
Parallelism
• Trade off between training throughput and

peak memory usage
• DDB is determined by the the number of

forward pass (FP) in start-up phase

• If the number of FP in start-up phase too small,
DDB will occur. But if too many FP reside
concurrently in stages, it will cause memory
pressure to IoT devices.

Start-up Phase

• Best micro-batch scheduling strategy

• Eq1:

• Avoid the occurrence of DDB while minimizing
memory pressure of each stage

The Number of FP of each
stage in start-up satisfy Eq1.
No DDB occur in pipeline.

12

of FP in start-up = 2(# of stages – stage index) – 1

Collaborative Edge Training Via Pipeline
Parallelism
• Issue: Dynamic edge resources

• IoT devices usually have high variation in
available computing capability and memory
resources

• The maximum throughput of the pipeline is greatly
determined by the lagger

13

Collaborative Edge Training Via Pipeline
Parallelism
• Issue: Dynamic edge resources

• IoT devices usually have high variation in
available computing capability and memory
resources

• The maximum throughput of the pipeline is greatly
determined by the lagger

• Solution: Adaptive workload migration
• Training worker will periodically report the

execution time of FP and BP

• If there is a large deviation between the current
and historical execution time of any device,
pipeline will adaptively self-rebalance and
migrate workload according to new scheduling.

14

Traditional Sync. & Async. FL Architecture Eco-FL Hierarchical Architecture

• Sync. FL:
• Achieve high training performance
• The slowest client (straggler) can

significantly prolong the training time

• Async. FL:
• Alleviate the straggler issue
• Sacrifice accuracy and convergence

speed

• The available trusted devices that each
smart home can collaborate with usually
vary, which causes severe straggler issue

• Hybrid Hierarchical FL combine the best
of both Sync. and Async. mechanisms,
while efficiently alleviate straggler issue.

15

Grouping-based Hierarchical FL Aggregations

• Adaptive Client Grouping:
• Group smart homes according to their

training performance and data distribution

Adaptive Client
Grouping

Intra-group Sync.
Aggregation

Inter-group Async.
Aggregation

16

Grouping-based Hierarchical FL Aggregations

• Adaptive Client Grouping:
• Group smart homes according to their

training performance and data distribution

• Intra-group Synchronous Aggregation:
• Synchronous aggregation is applied to

aggregate model updates from the clients
with similar response latency within a
same group

Adaptive Client
Grouping

Intra-group Sync.
Aggregation

Inter-group Async.
Aggregation

17

Grouping-based Hierarchical FL Aggregations

• Adaptive Client Grouping:
• Group smart homes according to their

training performance and data distribution

• Intra-group Synchronous Aggregation:
• Synchronous aggregation is applied to

aggregate model updates from the clients
with similar response latency within a
same group

• Inter-group Asynchronous Aggregation:
• Asynchronous aggregation is made for

global model aggregation among different
groups

Adaptive Client
Grouping

Intra-group Sync.
Aggregation

Inter-group Async.
Aggregation

18

Grouping-based Hierarchical FL Aggregations

• Heterogeneity-aware Client Grouping

• System heterogeneity: Stragglers will prolong
the synchronous training time intra-group

• Data heterogeneity: Non-IID characteristics can
harm the convergence of model training during
synchronous process intra-group

• Grouping Target:

• Let the response latency of the members in the
group be as close as possible while having an
associated data distribution as close as
possible to the I.I.D. distribution

19

Grouping-based Hierarchical FL Aggregations

• Dynamic Client Re-grouping

• The response latency of each client can be
varying occasionally due to the changes in its
collaborative device resources, which can
disable the static grouping method

• Eco-FL server will monitor each client in run-
time and dynamically re-group client
according to their real-time response latency

20

Grouping-based Hierarchical FL Aggregations

Evaluation
• Experimental Setting

Federated Learning Pipeline Training

• Models:
• CNN with two 5x5 convolution layers

• Baselines:
• FedAvg, FedAsync, FedAT, Astraea

• Datasets:
• Cifar10, MNIST, Fashion-MNIST

• Testbed:
• Virtual machine instance (48 vCPUs and

64GB memory)

• Use Docker to deploy FL server and
clients. Each client gets assigned 2 vCPU
cores

• Models:
• EfficientNet, MobileNetv2

• Baselines:
• PipeDream, Gpipe, Single device

• Testbed:

21

Evaluation
• Federated Learning Performance

Training performance with different datasets Effectiveness of heterogeneity-aware client grouping

• Training performance
• Eco-FL hierarchical architecture outperforms the

baselines with faster convergence and higher
achieved accuracy

• Eco-FL with the adaptive scheduler can still
maintain a high performance under the IoT
environment with dynamic nature

• Heterogeneity-aware client grouping
• FedAT: Group clients only based on

response latency
• Astraea: Grouping clients only based on

data distribution
• Eco-FL heterogeneity-aware grouping

method outperform both FedAT and Astraea
up to 26.3% on testing accuracy

22

Evaluation
• Pipeline Training Performance
• Training Results

• Evaluation on a 2-stage pipeline and a 3-stage pipeline
• Eco-FL pipeline efficiently collaborates the computation power of all IoT devices

and reaches the target accuracy 2.6× faster than data parallelism.

23

Evaluation
• Pipeline Training Performance
• Dynamic pipeline re-scheduling and

workload migration

• An external GPU workload to device 2
at the 100-th timestamp.

• Without pipeline re-scheduling, the
training speed of device 2 will
significantly slow down and become
lagger in the pipeline

• With our adaptive pipeline scheduler,
device 2 will migrate part of model
layers to device 1 and 3 to rebalance
the workload across each stage.

24

Conclusion
• We devise a novel edge collaborative pipeline parallelism to achieve edge resource

pooling over trusted devices in proximity for local FL model training acceleration.

• We propose Eco-FL, a hierarchical FL framework upon the edge collaborative pipeline training, which jointly
considers both the response latency and data distribution divergence.

• We feature adaptive scheduling in both FL server and client sides to tackle system dynamics inherent in edge
scenarios.

• Experimental results show that Eco-FL can upgrade the training accuracy by up to 26.3%, reduce the local
training time by up to 61.5%, and improve the local training throughput by up to 2.6× against state-of-the-art
baselines.

Thanks!
Shengyuan Ye, Liekang Zeng, Qiong Wu, Ke Luo, Qingze Fang, Xu Chen

yeshy8@mail2.sysu.edu.cn, Sun Yat-sen University

25

mailto:yeshy8@mail2.sysu.edu.cn

