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Federated Learning
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• Federated Learning workflow

• Each client uses its local data 
and available IoT computing 
resource to learn model 
parameters

• A central server aggregates
parameters to update the global 
model

• Periodically synchronizes global 
model with each client



Challenges of Training on Devices

On-Device 
Training
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• DNN Training is extremely 
computation-intensive and resource-
demanding

• Edge devices are resource-constrained 
and heterogeneous

How to train ?

Credit: Google Image
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• Existing Literature:

• Model Compression and Pruning

• Model Quantization

• Applying light-weight model on edge

• Drawback:

• Defect the model test accuracy as 
well as FL’s training convergence

• Need to optimize specially for a 
particular model and is not easily 
expandable
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Challenges of Training on Devices



Edge Collaboration DNN Training for FL

• Issues:

• Collaboration mechanism to orchestrate 
distributed edge devices

• Dynamics computing resource of IoT devices

• Heterogeneous computing capability of 
collaborated devices
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Data Parallelism Pipeline Parallelism

• Each device hold a complete model, which is 
expensive for memory-constrained IoT devices

• Parameters transmission overhead can occupy 
nearly 66.3% in data parallelism training

• Each device is responsible for a subset 
of model layers caching and computing

• Transmission overhead can be efficiently 
overlap by forward and backward 
computation
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Edge Collaboration DNN Training for FL



Eco-FL Framework Overview

Server-side Client-side
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Hierarchical grouping-based FL Pipeline edge collaboration



Collaborative Edge Training Via Pipeline 
Parallelism

Partition DNN 
into stages

Split mini-batch into 
micro-batches

Inject micro-batches 
concurrently

Update stage model 
(Pipeline flush)

• Pipeline Parallelism Workflow
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The number 
represents the 
micro-batch ID

Bubble means 
the device’s 

idle time



Collaborative Edge Training Via Pipeline 
Parallelism

Traditional Pipeline Strategy Eco-FL Resource-Efficient Pipeline Strategy 

• Backward pass only start After finishing 
all Forward pass (BAF Strategy)

• Activations produced by forward tasks 
have to be kept for all micro-batches 
until backward pass begin, which is 
memory-unfriendly for IoT devices

• Schedule one Forward pass followed by one
Backward pass (1F1B Strategy)

• Employ an early backward scheduling to 
release memory produced by forward pass 
for reuse

• Maintain the same throughput as BAF strategy

Early release memory of 
activation from micro-batch 0

Backward pass start after 
finishing all forward pass
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Collaborative Edge Training Via Pipeline 
Parallelism
• Heterogeneity-Aware Workload Partitioning 

Load Balance

• Step 1: Profiling
• Monitor the computation time across 

forward pass and backward pass on 
heterogeneous IoT devices

• Collect layer message of DNN model

• Step 2: Workload Partitioning:
• Global throughput of the pipeline is 

determined by the execution time of 
slowest stage (lagger)

• Partition the model into balanced stages 
with dynamic programming algorithm
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Collaborative Edge Training Via Pipeline 
Parallelism
• Pipeline bubbles analysis

• Synchronous Static Bubble (SSB)
• Caused by the periodic pipeline flush, 

inevitable in synchronous strategy

• Can be minimized by increasing the 
number of micro-batches injected 
concurrently 

• Data Dependency Bubble (DDB)
• Caused by the data dependency of micro-

batches in pipeline training.

• The occurrence of DDB is periodic and 
can not be eliminated by increasing the 
number of micro-batches
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Collaborative Edge Training Via Pipeline 
Parallelism
• Trade off between training throughput and 

peak memory usage
• DDB is determined by the the number of 

forward pass (FP) in start-up phase

• If the number of FP in start-up phase too small, 
DDB will occur. But if too many FP reside 
concurrently in stages, it will cause memory 
pressure to IoT devices.

Start-up Phase

• Best micro-batch scheduling strategy

• Eq1:

• Avoid the occurrence of DDB while minimizing 
memory pressure of each stage

The Number of FP of each 
stage in start-up satisfy Eq1. 
No DDB occur in pipeline.
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# of FP in start-up = 2(# of stages – stage index) – 1



Collaborative Edge Training Via Pipeline 
Parallelism
• Issue: Dynamic edge resources

• IoT devices usually have high variation in 
available computing capability and memory 
resources

• The maximum throughput of the pipeline is greatly 
determined by the lagger

13



Collaborative Edge Training Via Pipeline 
Parallelism
• Issue: Dynamic edge resources

• IoT devices usually have high variation in 
available computing capability and memory 
resources

• The maximum throughput of the pipeline is greatly 
determined by the lagger

• Solution: Adaptive workload migration
• Training worker will periodically report the 

execution time of FP and BP

• If there is a large deviation between the current 
and historical execution time of any device, 
pipeline will adaptively self-rebalance and 
migrate workload according to new scheduling.
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Traditional Sync. & Async. FL Architecture Eco-FL Hierarchical Architecture

• Sync. FL: 
• Achieve high training performance
• The slowest client (straggler) can 

significantly prolong the training time

• Async. FL: 
• Alleviate the straggler issue
• Sacrifice accuracy and convergence 

speed

• The available trusted devices that each 
smart home can collaborate with usually 
vary, which causes severe straggler issue 

• Hybrid Hierarchical FL combine the best 
of both Sync. and Async. mechanisms, 
while efficiently alleviate straggler issue.
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Grouping-based Hierarchical FL Aggregations



• Adaptive Client Grouping:
• Group smart homes according to their 

training performance and data distribution

Adaptive Client
Grouping

Intra-group Sync. 
Aggregation

Inter-group Async. 
Aggregation
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Grouping-based Hierarchical FL Aggregations



• Adaptive Client Grouping:
• Group smart homes according to their 

training performance and data distribution

• Intra-group Synchronous Aggregation:
• Synchronous aggregation is applied to 

aggregate model updates from the clients 
with similar response latency within a 
same group

Adaptive Client
Grouping

Intra-group Sync. 
Aggregation

Inter-group Async. 
Aggregation
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Grouping-based Hierarchical FL Aggregations



• Adaptive Client Grouping:
• Group smart homes according to their 

training performance and data distribution

• Intra-group Synchronous Aggregation:
• Synchronous aggregation is applied to 

aggregate model updates from the clients 
with similar response latency within a 
same group

• Inter-group Asynchronous Aggregation:
• Asynchronous aggregation is made for 

global model aggregation among different 
groups 

Adaptive Client
Grouping

Intra-group Sync. 
Aggregation

Inter-group Async. 
Aggregation
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Grouping-based Hierarchical FL Aggregations



• Heterogeneity-aware Client Grouping

• System heterogeneity: Stragglers will prolong 
the synchronous training time intra-group

• Data heterogeneity: Non-IID characteristics can 
harm the convergence of model training during 
synchronous process intra-group

• Grouping Target:

• Let the response latency of the members in the 
group be as close as possible while having an 
associated data distribution as close as 
possible to the I.I.D. distribution 
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Grouping-based Hierarchical FL Aggregations



• Dynamic Client Re-grouping

• The response latency of each client can be 
varying occasionally due to the changes in its 
collaborative device resources, which can 
disable the static grouping method

• Eco-FL server will monitor each client in run-
time and dynamically re-group client 
according to their real-time response latency
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Grouping-based Hierarchical FL Aggregations



Evaluation
• Experimental Setting

Federated Learning Pipeline Training

• Models: 
• CNN with two 5x5 convolution layers

• Baselines: 
• FedAvg, FedAsync, FedAT, Astraea

• Datasets:
• Cifar10, MNIST, Fashion-MNIST

• Testbed:
• Virtual machine instance (48 vCPUs and 

64GB memory)

• Use Docker to deploy FL server and 
clients. Each client gets assigned 2 vCPU 
cores

• Models: 
• EfficientNet, MobileNetv2

• Baselines: 
• PipeDream, Gpipe, Single device

• Testbed:
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Evaluation
• Federated Learning Performance

Training performance with different datasets Effectiveness of heterogeneity-aware client grouping 

• Training performance
• Eco-FL hierarchical architecture outperforms the 

baselines with faster convergence and higher 
achieved accuracy

• Eco-FL with the adaptive scheduler can still 
maintain a high performance under the IoT 
environment with dynamic nature

• Heterogeneity-aware client grouping
• FedAT: Group clients only based on 

response latency
• Astraea: Grouping clients only based on 

data distribution
• Eco-FL heterogeneity-aware grouping 

method outperform both FedAT and Astraea
up to 26.3% on testing accuracy
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Evaluation
• Pipeline Training Performance
• Training Results

• Evaluation on a 2-stage pipeline and a 3-stage pipeline
• Eco-FL pipeline efficiently collaborates the computation power of all IoT devices 

and reaches the target accuracy 2.6× faster than data parallelism. 
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Evaluation
• Pipeline Training Performance
• Dynamic pipeline re-scheduling and 

workload migration

• An external GPU workload to device 2 
at the 100-th timestamp.

• Without pipeline re-scheduling, the 
training speed of device 2 will 
significantly slow down and become 
lagger in the pipeline

• With our adaptive pipeline scheduler, 
device 2 will migrate part of model 
layers to device 1 and 3 to rebalance 
the workload across each stage. 
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Conclusion
• We devise a novel edge collaborative pipeline parallelism to achieve edge resource 

pooling over trusted devices in proximity for local FL model training acceleration.

• We propose Eco-FL, a hierarchical FL framework upon the edge collaborative pipeline training, which jointly
considers both the response latency and data distribution divergence. 

• We feature adaptive scheduling in both FL server and client sides to tackle system dynamics inherent in edge 
scenarios.

• Experimental results show that Eco-FL can upgrade the training accuracy by up to 26.3%, reduce the local 
training time by up to 61.5%, and improve the local training throughput by up to 2.6× against state-of-the-art 
baselines. 
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